3.866 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[Out]

2*a*sin(d*x+c)/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)-2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+
1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/(a^2-b^2)
/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4264, 3844, 21, 3856, 2655, 2653} \[ \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(-2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/((a^2 - b^2)*d*Sqrt[(b
+ a*Cos[c + d*x])/(a + b)]) + (2*a*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 3844

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a*d^2
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2))/(f*(m + 1)*(a^2 - b^2)), x] - Dist[d^2/((
m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e +
f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Lt
Q[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\\ &=\frac {2 a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a}{2}-\frac {1}{2} b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac {2 a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac {2 a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{\left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)}}\\ &=\frac {2 a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=-\frac {2 \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 7.85, size = 260, normalized size = 2.06 \[ \frac {\sqrt {\cos (c+d x)} \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+b) \left ((a-b) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {\frac {a+b \sec (c+d x)}{(a+b) (\sec (c+d x)+1)}}+i \sqrt {\sec (c+d x)+1} (a \cos (c+d x)+b) F\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-i \sqrt {\sec (c+d x)+1} (a \cos (c+d x)+b) E\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} (a+b \sec (c+d x))^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(Sqrt[Cos[c + d*x]]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sec[c + d*x]^(3/2)*((-I)*(b + a*Cos[c + d*x])*Elli
pticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 + Sec[c + d*x]] + I*(b + a*Cos[c + d*x])*EllipticF
[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 + Sec[c + d*x]] + (a - b)*Sqrt[Sec[c + d*x]]*Sqrt[(a +
b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))]*Sin[c + d*x]))/((a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/((a + b)
*(1 + Cos[c + d*x]))]*(a + b*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.98, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{b^{2} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + a^{2} \cos \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c))/(b^2*cos(d*x + c)^2*sec(d*x + c)^2 + 2*a*b*cos(d*x + c)^2
*sec(d*x + c) + a^2*cos(d*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 1.26, size = 491, normalized size = 3.90 \[ -\frac {2 \left (\sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )-\sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )+\EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}-\sqrt {\frac {a -b}{a +b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}\, \left (\sqrt {\cos }\left (d x +c \right )\right )}{d \left (b +a \cos \left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, \left (a +b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-2/d*(((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/
(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)-((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1
/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*si
n(d*x+c)*cos(d*x+c)+EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d
*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))
^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)
*sin(d*x+c)+cos(d*x+c)*((a-b)/(a+b))^(1/2)-((a-b)/(a+b))^(1/2))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)
^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)/((a-b)/(a+b))^(1/2)/(a+b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________